Equilibration of concentrated hard-sphere fluids
نویسندگان
چکیده
منابع مشابه
Comparison of structure and transport properties of concentrated hard and soft sphere fluids.
Using Newtonian and Brownian dynamics simulations, the structural and transport properties of hard and soft spheres have been studied. The soft spheres were modeled using inverse power potentials (V approximately r(-n), with 1n the potential softness). Although, at constant density, the pressure, diffusion coefficient, and viscosity depend on the particle softness up to extremely high values of...
متن کاملOptimal packing of polydisperse hard-sphere fluids
We consider the effect of intermolecular interactions on the optimal size-distribution of N hard spheres that occupy a fixed total volume. When we minimize the free-energy of this system, within the Percus–Yevick approximation, we find that no solution exists beyond a quite low threshold (h'0.260). Monte Carlo simulations reveal that beyond this density, the size-distribution becomes bimodal. S...
متن کاملAging and ultra-slow equilibration in concentrated colloidal hard spheres
We study the dynamic behaviour of concentrated colloidal hard spheres using Time Resolved Correlation, a light scattering technique that can detect the slow evolution of the dynamics in out-of-equilibrium systems. Surprisingly, equilibrium is reached a very long time after sample initialization, the non-stationary regime lasting up to three orders of magnitude more than the relaxation time of t...
متن کاملAgeing and ultra-slow equilibration in concentrated colloidal hard spheres
Abstract We study the dynamic behaviour of concentrated colloidal hard spheres using time resolved correlation, a light scattering technique that can detect the slow evolution of the dynamics in out-of-equilibrium systems. Surprisingly, equilibrium is reached a very long time after sample initialization, the nonstationary regime lasting up to three orders of magnitude more than the relaxation t...
متن کاملBinary hard-sphere fluids near a hard wall
By using the Rosenfeld density functional, we determine the number density profiles of both components of binary hard-sphere fluids close to a planar hard wall as well as the corresponding excess coverage and surface tension. The comparison with published simulation data demonstrates that the Rosenfeld functional, both its original version and sophistications thereof, is superior to previous ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.83.060501